• Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 3  |  Issue : 5  |  Page : 153-158

Motion estimation of the liver based on deformable image registration: a comparison between four-dimensional-computed tomography and four-dimensional-magnetic resonance imaging


1 Medical Physics Graduate Program, Duke University, Durham, NC, USA
2 Medical Physics Graduate Program, Duke University; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
3 Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
4 Department of Radiology, Duke University Medical Center, Durham, NC, USA

Correspondence Address:
Jing Cai
Department of Radiation Oncology, Duke University Medical Center, Box 3295, Durham, NC 27710
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ctm.ctm_24_17

Rights and Permissions

Aim: The aim of this study was to evaluate deformable image registration (DIR)-based motion estimation of the liver for four-dimensional-computed tomography (4D-CT) and 4D-magnetic resonance imaging (MRI). Methods: Five liver cancer patients were included. Each patient was imaged with 4D-CT and 4D-MRI under an Institutional Review Board-approved protocol. Motion estimation of the liver was obtained by performing DIR on 4D-CT and 4D-MRI. A region of interest (ROI) encompassing the expert-determined gross tumor volume was used as surrogate to evaluate the accuracy of the motion estimation. ROI motion trajectories were estimated by averaging the displacement vector fields (DVFs) within the ROI during the breathing cycles for 4D-CT and 4D-MRI and were compared to those extracted from cine MR. Target registration error (TRE), correlation coefficient (CC) for phase agreement, difference in phase at maximum displacement (ΔPmax), and Dice's Similarity Coefficient (DSC) for overall motion agreement were determined. Results: As compared to 4D-CT, 4D-MRI resulted in smaller TRE in DVFs (anterior-posterior [AP]: 1.0 ± 0.4 mm vs. 1.5 ± 0.5 mm, superior-inferior [SI]: 1.9 ± 0.7 mm vs. 2.2 ± 0.8 mm), greater CC (AP: 0.67 ± 0.32 vs. 0.49 ± 0.26, SI: 0.84 ± 0.15 vs. 0.58 ± 0.28), smaller ΔPmax (AP: 1.4 ± 1.7 vs. 2.0 ± 1.0, SI: 0.4 ± 0.9 vs. 1.2 ± 0.8), and greater DSC (AP: 0.67 ± 0.08 vs. 0.61 ± 0.11, SI: 0.73 ± 0.12 vs. 0.67 ± 0.10). Conclusion: 4D-MRI can potentially provide more realistic respiratory DVFs of the liver than 4D-CT.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed174    
    Printed5    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal