• Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 4  |  Issue : 3  |  Page : 65-69

A multisource adaptive magnetic resonance image fusion technique for versatile contrast magnetic resonance imaging


1 Medical Physics Graduate Program, Duke University; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
2 Medical Physics Graduate Program, Duke University; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA; Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
3 Medical Physics Graduate Program, Duke University; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Correspondence Address:
Dr. Jing Cai
Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ctm.ctm_21_18

Rights and Permissions

Aim: Magnetic resonance imaging (MRI) has been widely used in radiation therapy (RT) treatment planning. The current practice to capture clinical indications like tumor from MRI is to review multiple types of MRI separately, which can be inefficient and the tumor contrast is limited by existing images. This study presented a novel approach to effectively integrate clinical meaningful information of multiple MRI to produce a set of fused MRI with versatile image contrasts. A multisource adaptive fusion technique was developed in this approach using limited number of standard MR images as input. Methods: The multisource adaptive MRI fusion technique is designed with five key components: input multiple MRI, image preprocessing, fusion algorithm, adaptation methods, and output-fused MRI. A linear-weighting fusion algorithm is used to demonstrate the proof of concept. Fusion options (weighting parameters and image features) are precalculated and saved in a database for fast fusion operation. Input- and output-driven approaches are developed for MRI contrast adaptation. The technique is tested in human digital phantom 4D extended cardiac-torso (XCAT) for versatile contrast MRI generation. Results: A graphic user interface was developed in Matlab environment. Input- and output-driven adaptation methods were implemented for interactive user operation to achieve different clinical goals. Using four input MR images (T1W, T2W, T2/T1W, and diffusion weighted), the fusion technique generated hundreds of fused MR images with versatile image contrasts. Conclusion: A novel multisource adaptive image fusion technique capable of generating versatile contrast MRI from a limited number of standard MR images was demonstrated. This method has the potential to enhance the effectiveness and efficiency of MR applications in RT.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed381    
    Printed20    
    Emailed0    
    PDF Downloaded81    
    Comments [Add]    

Recommend this journal