• Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
ORIGINAL ARTICLE
Year : 2019  |  Volume : 5  |  Issue : 3  |  Page : 47-49

OSMCC: An online survival analysis tool for Merkel cell carcinoma


1 Department of Preventive Medicine, Joint National Laboratory for Antibody Drug Engineering, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
2 Department of Preventive Medicine, Joint National Laboratory for Antibody Drug Engineering, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng; Department of Thoracic Surgery, The Affiliated Nanshi Hospital of Henan University, Nanyang, China
3 Department of Anesthesia, Stanford University, Pasteur Drive Stanford, CA, USA

Date of Submission23-Apr-2019
Date of Acceptance29-Jul-2019
Date of Web Publication30-Sep-2019

Correspondence Address:
Prof. Xinying Ji
Department of Preventive Medicine, Joint National Laboratory for Antibody Drug Engineering, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Software, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ctm.ctm_19_19

Rights and Permissions
  Abstract 


Aims: To develop a free accessible online tool to identify the prognostic markers for Merkel cell carcinoma (MCC) and to estimate the significance of interested gene in a cohort of clinical patients.
Settings and Design: R package is used to calculate and plot the Kaplan–Meier survival curve.
Subjects and Methods: An online search engine was developed by combining MCC datasets with available anatomoclinical data in Gene Expression Omnibus. In current study, genomic expression profile of thirty patients comprising 42985 probes and 21651 genes was evaluated. Patients were divided into first quartile, second quartile, and third quartile. Information about different cancer patients of varying stages (Stage I–IV) was stored using median survival scale of 14.5 months. Data were stored in SQL Server database and hosted on Windows Server 2008 using Apache Tomcat application server.
Statistical Analysis Used: Log-rank test was applied and P < 0.05 was considered statistically significant.
Results: An Online Survival analysis tool for MCC abbreviating as OSMCC was developed, which can assess the expression level relevance of various genes on the clinical outcome in MCC patients. By OSMCC, the survival curve could be displayed, and the hazard ratio with 95% confidence intervals and log-rank P value can also be calculated.
Conclusions: The study demonstrated the ability of OSMCC to identify and analyze transcriptome and clinical datasets for MCC through prognosis significance analysis. So far, OSMCC is the first advanced and specific tool for the prognostic measurement of MCC. Furthermore, OSMCC can prove to be a highly valuable database for the preliminary assessment and identification of potential MCC prognostic biomarkers. OSMCC is accessible at http://bioinfo.henu.edu.cn/MCC/MCCList.jsp.

Keywords: Bioinformatics, Merkel cell carcinoma, microarray, prognosis


How to cite this article:
Saddozai UA, Wang Q, Sun X, Dang Y, Lv J, Xin J, Zhu W, Li Y, Ji X, Guo X. OSMCC: An online survival analysis tool for Merkel cell carcinoma. Cancer Transl Med 2019;5:47-9

How to cite this URL:
Saddozai UA, Wang Q, Sun X, Dang Y, Lv J, Xin J, Zhu W, Li Y, Ji X, Guo X. OSMCC: An online survival analysis tool for Merkel cell carcinoma. Cancer Transl Med [serial online] 2019 [cited 2019 Oct 23];5:47-9. Available from: http://www.cancertm.com/text.asp?2019/5/3/47/268228




  Introduction Top


In recent decades, researchers have been exploring the molecular base of disease by gene microarray-based transcriptome analysis. Analyzing transcriptome permits oncologists to evaluate the biochemical pathways and regulatory mechanisms associated with transformation of tumors. Gene microarray can also allow identifying novel diagnostic and prognostic biomarkers and therapeutic targets. As a result, increased amounts of DNA microarray data are being generated by the research community with the help of Microarray Gene Expression Data (MGED) Society. Researchers are encouraged by the MGED Society to deposit their data in public depositories which follow the guidelines of Minimum Information about a Microarray Experiment.[1],[2] Complete microarray datasets, either in the form of supplementary data in publications or in public databases including Gene Expression Omnibus (GEO)[3] or Array Express,[4] are soon going to be available when manuscripts are accepted. Nevertheless, analyses of the data with one specific scientific or biological question in mind make them to be not used to their full potential. Application of these public datasets to start new research is also difficult as access and analysis of them are not always easy. In this study, we developed an online survival analysis tool (OSMCC), which used Kaplan–Meier plot and log-rank test to assess the prognostic potency of human genes in Merkel cell carcinoma (MCC) patients using the gene expression profiling data.


  Subjects and Methods Top


Collection of data sets related to Merkel cell carcinoma

To find appropriate data sets for the analysis, we explored The Cancer Genome  Atlas More Details (TCGA; http://cancergenome.nih.gov) and GEO (GEO; http://www.ncbi.nlm.nih.gov/geo/) using the keywords such as Merkel cell carcinoma, cancer of Markel cell, survival, and prognosis. Each studied sample must have anatomopathological and/or clinical characteristics and gene expression profiling data to be considered for analysis. Clinical survival information and gene expression profiling data of MCC patients were collected. We only found the required datasets in GEO and were carefully selected based on the availability of their respective anatomoclinical data. Patients were grouped according to different parameters. A total of thirty patients, including both males and females, with the probes of 42,985 and 21,651 genes were used for analysis. Tumor location information displayed the highest number of cases on legs (20%) and cheeks (13%). Patients were also categorized into first quartile, second quartile, and third quartile. Furthermore, some other important parameters were gathered with their relation to patients' age, stage at diagnosis, gender, and outcome.

Setup of server for online survival calculation

The gene expression and clinical data were stored in SQL Server database. The server is hosted on Windows Server 2008, and Apache Tomcat was used as application server. The server-side scripts were developed in Java, which controls the analysis requests and delivers the results. The R (https://www.r-project.org/) package was used to calculate and plot Kaplan–Meier survival curves. Hazard ratio (HR and 95% confidence intervals) and log-rank P values were calculated and presented. OSMCC can be reached at http://bioinfo.henu.edu.cn/MCC/MCCList.jsp.


  Results Top


We identified a data set of thirty patients meeting our criteria in GEO (GSE39612). Of the above, 33.3% patients were Stage I, 23.3% were Stage II, and 33.3% were Stage III tumors. There was no information provided about the stage of remaining 11% of the patients. The age ranged from 53 to 90 years. Seventy-six percent of patients were not found to be immunosuppressed, while 23% were immunosuppressed and no information was provided about the remaining 1%.

The Kaplan–Meier plot and log-rank test showed the association between investigated genes and overall survival in which the samples were grouped according to the median (or upper or lower quartile/trichotomy) expression of the selected gene. Before running the analysis, the patients can be filtered using stage, gender, and site of tumor [Figure 1]a. Representative Kaplan–Meier plots for NAPRT and ADM gene are demonstrated in [Figure 1]b and [Figure 1]c.
Figure 1: Screenshot of Online Survival analysis tool for Merkel cell carcinoma main interface (a), and Kaplan–Meier plots for representative gene NAPRT (b) and ADM (c)

Click here to view



  Discussion Top


MCC is a rare type of skin cancer having low occurrence rate ranging from 240 to 440 patients/100,000 individuals[5],[6],[7] and is progressive cancer with low survival rate of 29%–64%.[8],[9],[10],[11],[12],[13],[14] The major systems in identifying prognostic pattern of MCC patients include cancer staging[5],[9],[10],[14],[15],[16],[17],[18] and various available biomarkers.

The development of prognostic biomarkers is a major bottleneck in skin cancer (MCC) research. In this study, we developed a freely accessible online tool, OSMCC, to estimate the prognostic value of any interested gene in a cohort of clinical patients. A Kaplan–Meier plot is generated after recording patient information on the selected gene. The implemented computations can be performed in real time on our server. This enables seamless extension in the future using new data sets or new filtering options. We plan to continuously incorporate new GEO data sets as well as new TCGA samples in OSMCC. In contrast to other skin cancers where several approved markers are already in clinical use, MCC shows minimal progress in recent years.


  Conclusion Top


OSmcc has the potential to identify MCC through transcriptome and clinical datasets analysis. It can prove to become an efficient online source for the MCC prognostic measurement due to its database infrastructure, which provides complementary data for the detection of biomarkers responsible for MCC prognosis

Financial Support and Sponsorship

This work was supported by the National Natural Science Foundation of China (No. 81602362 to XG), the program for Science and Technology Development in Henan Province (No. 162102310391 to XG), the program for Young Key Teacher of Henan Province (No. 2016GGJS-214 to XG), the supporting grants of Henan University (No. 2015YBZR048 to XG; No.B2015151 to XG), the program for Innovative Talents of Science and Technology in Henan Province (No. 18HASTIT048 to XG), and Yellow River Scholar Program (No.H2016012 to XG). The funding bodies were not involved in the study design, data collection, analysis, and interpretation of data or in writing of this manuscript.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoecker C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet 2001; 29: 365–71.  Back to cited text no. 1
    
2.
Ball CA, Brazma A, Causton H, Chervitz S, Edgar R, Hingamp P, Matese JC, Parkinson H, Quackenbush J, Ringwald M, Sansone SA, Sherlock G, Spellman P, Stoeckert C, Tateno Y, Taylor R, White J, Winegarden N. Submission of microarray data to public repositories. PLoS Biol 2004; 2: e317.  Back to cited text no. 2
    
3.
Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar R. NCBI GEO: Mining millions of expression profiles–database and tools. Nucleic Acids Res 2005; 33: D562–6.  Back to cited text no. 3
    
4.
Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S, Coulson R, Farne A, Lara GG, Holloway E, Kapushesky M, Lilja P, Mukherjee G, Oezcimen A, Rayner T, Rocca-Serra P, Sharma A, Sansone S, Brazma A. ArrayExpress: A public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2005; 33: D553–5.  Back to cited text no. 4
    
5.
Agelli M, Clegg LX. Epidemiology of primary Merkel cell carcinoma in the United States. J Am Acad Dermatol 2003; 49: 832–41.  Back to cited text no. 5
    
6.
Pan D, Narayan D, Ariyan S. Merkel cell carcinoma: 5 case reports using sentinel lymph node biopsy and a review of 110 new cases. Plast Reconstr Surg 2001; 110: 1259–65.  Back to cited text no. 6
    
7.
Hodgson NC. Merkel cell carcinoma: Changing incidence trends. J Surg Oncol 2005; 89: 1–4.  Back to cited text no. 7
    
8.
Dancey AL, Rayatt SS, Soon C, Ilchshyn A, Brown I, Srivastava S. Merkel cell carcinoma: A report of 34 cases and literature review. J Plast Reconstr Aesthet Surg 2006; 59: 1294–9.  Back to cited text no. 8
    
9.
Koljonen V, Bohling T, Granhroth G, Tukiainen E. Merkel cell carcinoma: A clinicopathological study of 34 patients. Eur J Surg Oncol 2003; 29: 607–10.  Back to cited text no. 9
    
10.
Medina-Franco H, Urist MM, Fiveash J, Heslin MJ, Bland KI, Beenken SW. Multimodality treatment of Merkel cell carcinoma: Case series and literature review of 1024 cases. Ann Surg Oncol 2001; 8: 204–8.  Back to cited text no. 10
    
11.
Tai PT, Yu E, Winquist E, Hammond A, Stitt L, Tonita J, Gilchrist J. Chemotherapy in neuroendocrine/Merkel cell carcinoma of the skin: Case series and review of 204 cases. J Clin Oncol 2000; 18: 2493–9.  Back to cited text no. 11
    
12.
Lonardo MT, Marone U, Apice G, Ferrara E, De Chiara A, Cerra R, Chiofalo MG, Mozzillo N. Merkel cell carcinoma: Experience of 14 cases and literature review. J Exp Clin Cancer Res 2006; 25: 331–7.  Back to cited text no. 12
    
13.
Smith DE, Bielamowicz S, Kagan AR, Anderson PJ, Peddada AV. Cutaneous neuroendocrine (Merkel cell) carcinoma. A report of 35 cases. Am J Clin Oncol 1995; 18: 199–203.  Back to cited text no. 13
    
14.
Eng TY, Naguib M, Fuller CD, Jones WE 3rd, Herman TS. Treatment of recurrent Merkel cell carcinoma: An analysis of 46 cases. Am J Clin Oncol 2004; 27: 576–83.  Back to cited text no. 14
    
15.
Allen PJ, Bowne WB, Jaques DP, Brennan MF, Busam K, Coit DG. Merkel cell carcinoma: Prognosis and treatment of patients from a single institution. J Clin Oncol 2005; 23: 2300–9.  Back to cited text no. 15
    
16.
Allen PJ, Zhang ZF, Coit DG. Surgical management of Merkel cell carcinoma. Ann Surg 1999; 229: 97–105.  Back to cited text no. 16
    
17.
Yiengpruksawan A, Coit DG, Thaler HT, Urmacher C, Knapper WK. Merkel cell carcinoma. Prognosis and management. Arch Surg 1991; 126: 1514–9.  Back to cited text no. 17
    
18.
Tai PT, Yu E, Tonita J, Gilchrist J. Merkel cell carcinoma of the skin. J Cutan Med Surg 2000; 4: 186–95.  Back to cited text no. 18
    


    Figures

  [Figure 1]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Subjects and Methods
Results
Discussion
Conclusion
References
Article Figures

 Article Access Statistics
    Viewed176    
    Printed17    
    Emailed0    
    PDF Downloaded27    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]